

Integrated Wet Weather Improvement Plan

Rebuilding the Pipeline for Our Future

This evening's goal is to inform you about:

- 1. The challenge Lakewood faces controlling overflows
- Input from the Clean Water Lakewood Taskforce
- 3. Potential control measures
- 4. Planning-level financial estimate
- 5. Next steps
- 6. Timeline

Our Challenge

- Lakewood collection system and treatment plant perform well during dry weather and very minor rain events
- Generally, whenever we have significant rain our sewer system overflows; discharging untreated sewage into lake and river
 - ~68 overflow locations throughout Lakewood
 - many are not directly overflowing to lake or river, but overflow to the storm sewer system and then to the lake or river
- Federal and OEPA mandate: Lakewood must control millions of gallons of sewer overflow that happen every year

Why do we have overflows?

- ~70% of land is impervious
 - streets, sidewalks, driveways, rooftops
 - limited areas where water can infiltrate
- Many homes have gutters and foundation drains leaking into the sanitary sewer
- Storm laterals blocked with dirt and backup into the sanitary lateral
- Old, broken & cracked pipes that allow water to enter
- ~30% of our sewers were designed in the horse and buggy era and were intended to overflow into the lake
- Stormwater is unnecessarily collected and delivered to treatment plant

Simplified combined sewer overflow (CSO) diagram

In a typical year Lakewood discharges over 170 million gallons of sewage mixed with stormwater to Lake Erie and Rocky River.

Lakewood's Permit

- OEPA & City establish goals on permit, such as:
 - Characterization study of sewer system.
 - Integrated Wet Weather Improvement Plan (IWWIP)
 - Constructing an interim control measure that requires high rate treatment of wet weather flow
 - Continually monitoring all overflows
 - Eliminating cross connections within the sewer system
 - Insuring that there are no dry weather sewage discharges from the City's outfalls

<u>Characterization</u> - Comprehensive calibrated computer model of the sewer system

Integrated Wet Weather Improvement Plan (IWWIP) includes:

- A plan to eliminate or reducing overflows
- Analyzing pollutant discharges
- Engaging community
- Determining financial capability
- Performing sewer rate study

Two projects currently underway:

- Design of high rate treatment at WWTP
- Source control pilot study on Eldred, Atkins & Delaware

In June of 2015 the city asked citizens to volunteer to provide public input

Rebuilding the Pipeline for Our Future

Clean Water Lakewood Stats

- ~20 consistent volunteers: educated and engaged on sewer system and overflow complexities
- Met monthly July 2015-May 2016
 - 2 field trips: Watershed Stewardship Center (Parma) & Waste Water Treatment Plant (WWTP)
 - Many are interested to continue engaging with public on this issue
- Identified potential control measures, reflecting community values and priorities
- Evaluated public suggestions using the computer model and included the feasible alternatives in the IWWIP

The Clean Water Lakewood Resource Binder

- Contains all handouts; a copy is in Council Office
- Website also contains all handouts: onelakewood.com/cleanwaterlakewood/

Engagement strategies CWL task force identified

- Neighborhood competitions on reducing runoff
- Field trips to WWTP or Stewardship Center
- Create display explaining sewer issues, something 3-D perhaps in library
- Go out on lake and video when overflows occur
- Print FAQ handouts, set up table at farmer's market or local events
- Create waste and storm water flow diagrams, place in public buildings

Control measures the CWL task force suggested include:

- Source control on public and private property*
- Green infrastructure strategically located within the right of way (ROW)*
- East end storage/diversion
- Sewer separation

Goal: meet requirements of preventing overflows in a <u>typical year</u> of rain

* Modeling showed these are very effective

CWL taskforce suggestions were modeled to determine if they were feasible and effective approaches

Source Control: involves work on private & public property

- Homeowners often have both storm & sanitary connections, but:
 - Gutters and/or foundation drains are leaking into the sanitary sewer
 - Clogged storm downspouts and laterals that force water of out storm connection and into sanitary connection
 - Both of these cause rain water to enter sanitary sewer
- Old, cracked pipes allow groundwater to leach into the sanitary pipes, adding unnecessary water
- Conducted a pilot study on Eldred, Atkins, and Delaware to determine if properly connecting everyone's pipes is an effective approach to eliminating or reducing overflows

Pilot Study, public side: Manhole separation

Pilot Study, public side: Manhole separation

Pilot Study, private side: Connecting downspouts to storm lateral

Green Infrastructure

- Re-establishing natural processes to reduce runoff
- Runoff infiltrates into ground, taken up by plants, and/or evaporates
 - Bioretention and permeable pavement are the two types frequently discussed by taskforce

Permeable pavers in municipal lots A, B, and C

Cross-section of permeable pavement

Bioretention at Municipal Parking Lot C

Bioretention installed on Madison Avenue

Madison
Avenue
Bioretention

Bioretention on Madison Avenue

Lakewood's experience with Green Infrastructure

Location	Pre- construction Volume (gal)	Post Construction Volume (gal)	Reduction
St. Charles Avenue (Parking Lot A)	18,325	0	100%
Warren Road (Parking Lots A&B)	42,404	20,467	52%
Cook Avenue (Parking Lots B&C)	971,114	43,276	96%
Gladys Avenue (Parking Lot C)	9,707	5,656	42%
Madison Avenue (at Madison Park)	17,777	3,993	78%

Lakewood's experience with Green Infrastructure (continued)

Location	Pre- construction Rate (mgd)	Post Construction Rate (mgd)	Reduction
St. Charles Avenue (Parking Lot A)	0.314	0	100%
Warren Road (Parking Lots A&B)	1.262	0.503	60%
Cook Avenue (Parking Lots B&C)	17.410	1.751	90%
Gladys Avenue (Parking Lot C)	0.258	0.136	47%
Madison Avenue (at Madison Park)	0.429	0.082	81%

High Rate Treatment at WWTP

East End Potential Options

- Combined sewer area
- Even with extensive green infrastructure, overflows would be active
- Two potential approaches identified:
 - Possibly increasing flow to NEORSD sewers along West 117th Street; or
 - Construct a high-rate treatment facility in Gold Coast neighborhood

Areas for Sewer Separation

- Sections of the following: Edgewater, Webb, Thoreau, Clifton
- Separation has challenges similar to source control neighborhoods:
 - Could require private property work
 - Only clean water connections allowed to new sanitary

Planning-level Financial Estimate

Control Measure	Cost Estimate (\$ million)	Includes
Private-side Source Control	60.6	Lateral lining, sump pump, downspout redirection, properly connected homes
Public-side Source Control	60.6	Manhole separation, lining sewers, repairs
Green Infrastructure	40	Bioretention and permeable pavement
High Rate Treatment	35	Located at Lakewood WWTP
Miscellaneous	10	Separation, pump stations, storm sewers
Total (not including East End)	206.2	

East End Options		
Control Measure	Cost Estimate	
	(\$ million)	
Increase East End Flow to	3 3	
NEORSD 15 MGal Detention Basin	60	

IWWIP Report to OEPA is due September 1, 2016 and is to include:

- Hydraulic characterization of Lakewood including yearly overflows
- Pollutant model
- Pilot study analysis
- Public input program
- Planning-level control strategies (source control, green infrastructure, and high rate treatment)
- Basis of design for high rate treatment
- Planning-level cost estimate

Potential areas for Source Control and Green Infrastructure based on public input and analysis

Timeline

Date	Ohio EPA Requirement
September 2014	New NPDES permit issued by OEPA
September 2016	Design specifications of High Rate Treatment (HRT) due, as well as feasible alternatives plan created
March 2018	Submit a permit to install HRT plant, and begin construction within 6 months of permit being approved
March 2019	Final IWWIP due with alternatives analysis, financial analysis, and detailed plan for dealing with overflows
September 2022	Construction of HRT is complete and reducing overflows at plant